
NASA-CR-191899

An Investigation of

Error Characteristics and Coding Performance

. t -dF...
f

P3t

NASA GRANT NAG5-2006

July 1, 1992- June 30, 1993

Semi-Annual Report 1
July 1, 1992- Dee 30, 1992

I ,-- ,-I
m u ¢

o
zz
c_ _.. i

I.-- 0 Z c_

c.-o0 i..
I-ZO

uJ oJ _,

_uJ I _k

I Z ,..-
oc O_ ¢17,-.
0 _
I (X_ "_,.,.

0

Submitted to:

Mr. Warner Miller
Code 728.4

Instrument Electronic Systems Branch
Engineering Directorate

NASA/GOddard Space Flight Center
Greenbelt, MD 20771

301-286-8183

Submitted by:

William J. Ebel, Ph.D.
Frank M. Ingels, Ph.D.

Mississippi State University
Drawer EE

Mississippi State, MS 39762
601-325-3912

December 1992

An Investigationof
Error Characteristics and Coding Performance

NASA GRANT NAG5-2006

Iuly 1, 1992- June 30, 1993

Semi-AnnuM Report 1
July 1, 1992- Dec 30, 1992

Submitted to:

Mr. Warner Miller
Code 728.4

Instrument Electronic Systems Branch
Engineering Directorate

NASA/GOddard Space Flight Center
Greenbelt, MD 20771

301-286-8183

Submitted by:

William I. Ebel, Ph.D.

Frank M. Ingels, Ph.D.
MississippiStateUniversity

Drawer EE

Mississippi State, MS 39762
601-325-3912

Deeember 1992

Table of Contents

I. INTRODUCTION ..1

II. SOURCE CODE GENERAL DESCRIPTION ... 2

m. PROGRAM DESCRJI_ONS ... 7

7

7

A. Forward Error Correcting Codes ...

I. B1kDecod (Block Decoder) ..

2. Viterbi ... 8

B. Channel Error Sequences ... 9

I. BinErrs (Binomial Error Sequence generation) ...9

2. BrstEzrS (BurstErrorSequence generation)..10

3. BstyErrs (BurstyErrorsSequence generation)...II

C. Inmrleavers ..11

i. Block/at (Block Deinterleaver)..12

2. BlkArr (AlternateBlock Dcinterleaver)...13

3. DPCI (PeriodicConvolutionalDeinterleaver) ...13

4. DPCIAIt (Alternate PeriodicConvolutional Deinterleaver)14

D. Error Sequence Analysis ... 15

1. CVMseq (Cramer Von-Mises sequence distribution test) 15

2. CVMblk (Cramer Von-Mises dislribution test on error sequence blocks) 15

3. DeltaEst (Bursty-error parameter estimation via the A method) 16

4. IntvHst (Error Interval Histogram) ... 17

5. GAPEst (fixed GAP burst error distribution Estimation) 17

E. Utilities ... 18

1. Make Utility for Lahey Fortran v5.0 .. 18

2. CompSeq (Compare Sequence) .. 20

3. SetExrS (Set Error Pattern) ... 20

4. DisplSeq (Display Default Error Sequence) ... 21

5. DisplFil (Display Error Sequence from user File) ... 21

IV. NASA GSFC/MSU INTERRELATED CAPABILrIqE, S ... 22

A. EOS Real Error Sequence Data conversion program .. 22

B. Error Sequence Arehiver using Run Length Encoding ... 22

C. Exror Sequence Unarchiver .. 23

V. PREVIEW OF EXPECTED RESULTS ... 24

A. Researeh Focus 1 ... 24

B. Research Focus 2 ... 25

C. Choosing System Parameters .. 27

BIBLIOGRAPHY ... 31

ii

I. INTRODUCTION

This report describes research performed to date on NASA Grant NAG5-2006 for the

period July 1, 1992 through December 1, 1992.-This work involves studying the performance of

forward error correcting coding schemes on errors anticipated for the Earth Observation System

(EOS) Ku-band downlink.

The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite

System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF

interference from other systems operating in the Ku band, the noise at the receiver is

non-Gaussian which may result in non-random errors output by the demodulator. That is, the

downlink channel cannot be modeled by a simple memorytess Gaussian-noise channel. From

previous experience, it is believed that those errors are bursty.

The research has proceeded by developing a computer based simulation, called

Communication Link Error ANalysis (CLEAN), to model the downlink errors, forward error

correcting schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN, described

in Sections 3, 4, and 5, has been written, documented, debugged, and verified. The procedures

for utilizing CLEAN to investigate code performance have been established and will be

discussed in Seetion 5.

II. SOURCE CODE GENERAL DESCRIPTION

Each system component (decoder, deinterleaver, etc.) has been implemented in CLEAN as

separate executable computer programs which interface with each other through data files

including an error sequence data file. This allows them to be executed sequentially via a batch

file.

All computer programs read parameters from a separate ASCII parameter file with a fixed

default name. The default name for the parameter file is the same as the executable but has the

extension 'prm'. Also, there is a global parameter file, 'ID.prm', which contains a simulation

identifier (ID). Each program generates an output file with an extension identical to this I13.

This output file contains all the calculated statistics and estimated parameters from the program.

This allows all the files generated by a specific run to be quickly identified and distinguished

from data files generated by other runs.

To conduct the studies, a batch file is created which contains a series of executable

programs. The type and order of the executables in the batch file implements a particular system

configuration. For example, if the user chooses to use a Reed-Solomon (RS) decoder to decode a

sequence of random errors, then the batch file contains two exeeutables; the first generates a

random error sequence and the second uses an RS decoder to correct them. In general, the batch

file contains one of the channel error sequence generation programs which wiU generate an error

sequence stored in file name 'error.seq'. Each program which is executed makes use of and/or

modifies that error sequence and generates statistics and other outputs for the error pattern.

The programs have been written with parameter bounds in mind. For example, the

programs are designed so that the lowest channel average error probability to be investigated,

coded or uneoded, is roughly 10"6. Along with this, it is assumed that 20 errors are the minimum

number required to characterize the statistics of the channel, however, in general many more

errors will be generated per sequence. Thus as an upper bound, generating an error sequence,

coded or uneoded, with an error probability of 10 "6requires a minimum of 20/10 "6= 2x107 error

sequence values. The error sequence file is stored in a "packed" format so that 15 error sequence

values are stored per two bytes of memory. Therefore, the largest error sequence file is

2x107/(2/15) = 2.67Mbytes. This is sufficiently small so that allowable disc space on most

computers can accommodate several files at once. In general, error files are not stored but are

generated on the fly. Results can be reproduced by regenerating an error sequence given the

proper random number generator and the seed. If it turns out that regenerating the error

sequence takes too long, then a set of error sequences earl be generated and stored on disc or

magnetic tape to be retrieved when required.

All programshave been documented upon completion with a documentation test run. All

the generated documentation is stored in a common binder for later reference.

Each program conforms to a documentation standard which includes a

program/subroutine/function header as well as line comments within the code. On average, there

should be a comment line per 6 Lines of code to indicate the purpose of the next few lines of

code. The routine header takes the following form:

**

-- Program/Subroutlne/Function name: name (Acronym meanlng)

- Purpose: This program/subroutlne/functlon ...

c*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

- Revlslon History:

Date Who Reason

..

May 25, 1992 WE Origlnal

- Varlable/Flle List:

Name Type Descrlptlon
..

Inpuus:

Outputs:

Internals:

- Subroutlnes called:

- Subroutlnes called by:

- Functlons called:

- Functlons called by:

As an example, a program written to create a bursty-error sequence may have a header

which appears as follows:

C*

c* - Program name: BstyErrS (Bursty-Error Sequence)

c*

c* - Purpose: This program generates an binary error sequence wlth

c* bursty errors. The error sequence denotes a correct blnary channel

c* transmlssion wlth a 0 and denotes an error with a i. The error

c* sequence is partitloned into two maln, noncontiguous parts, the burst

c* error part and the thermal error part. The method used to generate

c* each part of the error sequence depends upon the denslty of errors to

c* be generated. For each error sequence part, if the requlred density of

c* errors Is greater than .01, then the program uses a condltlonal test on

c* a uniform random number in the range [0,1]. If the denslty of errors Is

c* less than .01, then the program w111 use a sample from the exponentlal

c* distribution to generate the next error occurrence time.

c* This program inputs parameters from an ASCII data file wlth default

c* name "BstyErrs.prm" and outputs the error sequence to a data file

c* with default name 'error.seq'. In addition, varlous statlstics are

c* output to an ASCII data file with default name 'BstyErrs. ID', where

c* ID is a three letter identifier for the current run whlch is Input from

c* file "ID.prm'.

c* The program is run by editing the parameter file 'BstyErrs.prm" and

c* selecting the appropriate parameters and by choosing a program [D by

c* editing file 'ID.prm'. Executing the program generates the 'error.seq'

c* file which contains an error sequence (in packed format) wlth

c* binomlally distrlbuted errors. It does not matter whether the output

c* file 'error.seq' exists or not. If it exists, it is overwrltten wlKhout

c* a prompt to the user.

c* Even though Poisson distrlbuted bursts may overlap in theory, this

c* progam does not allow error bursts to overlap. The user must take care

c* to speclfy input parameters so that the probability of overlapplng

c* burst is negligible. It is also assumed that Peg<Peb.

4

C*

C*

C* -- Revlslon History:
c _

G*

c* Aug 20, 1992 WE

c* Sept 14, 1992 :'_

c*

c* Oct 2, 1992 WE

c*

c* Nov 4, 1992 WE

c*

c* Nov 13, 1992 _'_

c _ Nov 16, 1992 WE

c*

o*

c* - Variable/File List:

c*

c*

c*

c*

c*

Orlglnal

Modified to use Makeflle to link source

and updated the documentatlon

Output Number of Errors to the error.seq

file header

Updated NextBurst function argument llst

to include the prevlous burst length

Added write to output Logl0(Density)

Changed all real variables to double preclslon

Inputs: None (See subroutlne ReadParams)

Outputs:

Name Type Descrlptlon

c*

c*

c*

c*

c*

c*

c*

c _

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

c*

C*

error.seq file

Nerrs integer*4

ErrDenslty real*8

NBurstyErrs integer*4

GenBurstDen real*8

GenThermDen real*8

NBursts integer*4

GenMeanIntv real*8

TotalBLeng_h integer*4

GenBDuratlon reai*8

Internals:

ID character*3

N integer*4

Tbs real*8

Peg real*8

PegSeed real*8

Peb real*8

PebSeed real*8

IntvFlag integer*4

IntvMean integer*4

IntvSeed real*8

IntvVar integer*4

LngthFlag integer*4

LngthMean integer*4

LngthSeed real*8

LngthVar integer*4

i,] integer*4

RecNum integer*4

NseqSym integer*4

Error(15) integer*4

zero integer*4

BurstIntvCount integer*4

PrevLength integer*4

ErrorBurstCount integer*4

PeglntvCount integer*4

PeblntvCount integer*4

DBESS integer*4

URV real*8

NSpllt(2) integer*2

NESplit(2) integer*2

Error sequence output file

(In packed format)

Total Number of errors generated

Total Error denslty for gene[ated seq

Number of errors in the burs_s

Error density wlthln the error bursts

Error denslty outslde the error bursts

Total n_Der of bursts generated

Average Durst occurrence

Total sum of burst lengths

Average burst length (seq sym)

identlfler for statlstlcs output flle

Error sequence length

Binary channel symbol frequency (freq.)

Thermal error density

Peg random number generator seed

Burst error denslty

Peb random nUmber generator seed

= i, Perlodic error occurrence tlmes

= 2, Gaussian error occurrence tlmes

3, Poisson error occurrence tlmes

Burst occurrence rate (interval mean)

Interval random number generator seed

Burst occurrence rate varlance

(interval statistic variance)

- I, Fixed length error bursts

- 2, Gausslan dist. error burst lengths

= 3, Exponentlal error burst lengths

Burst length distrlbutlon mean

Length random number generator seed

Burst length dlstrlbutlon variance

Do loop indices

Record number index (error.seq f11e)

Number of DBESS

Contalns 15 error sequence values

[dentlcally the number 0

Interval Count to next error burst

Prevlous Burst Length

Length of next error burst (seq sym)

Interval Count to next Therm error

Interval Count to next burst error

15 consecutlve error sequence values

stored in a 2 byte integer. Stands

for Double Byte Error Sequence Symbol

Uniform random varlable in [0, I]

A dummy array used to access each

double byte of the integer*4

number N.

A dununy array used to access each

double byte of the integer*4
nunlbe r Nerrs.

c* - Subroutlnes called: ReadParams, IterBinErrGen

c* - Functions called: PackErrors, UniformRV, NextBurst, NextLength
c*

**

Figure 1 shows an overallblockdiagram depictingthe CLEAN simulationcapability.The

CLEAN simulationrequiresthe followingassumptions:

I) The transmitteddata isallzero

2) Synchronization has been established(i.e.only steadystateerrorstatisticsare
considered)

3) Demodulator performs hard decisions

At each of thepointslabeledA, B, C, D, and E shown inFigure I,itispossibletoperform

statisticalanalysisincluding(seeSectionm.D below):

I) Perform the Cramer Von Mises distributiontestto determine fftheerrorsarerandom.

2) Perform the Cramer Von Miscs distributionteston blocks of the errorsequence.

3) Estimate burst-errorparamctcrs

a) Average burst-errorlength

b) Variance of the burst-errorlength

c) Listof the burst-errorIcngths

d) Average random intervallength

e) Variance of the random intervallength

d) Listof the random inmrvallengths

4) The errorintervalhistogram (forrandom errorsthisshould bc an exponential

distribution)

5) Determination of the burst-errordismbution 'ala'CLASS

For each program, the calculamd statisticsareoutputto the log Rle as describedabove.

5

Block _ => Block Interleaver =>
Convolutional Encoder => PCI

Always Send 0 Vector

Error Vector E

BurstyNoise [

A

J Vlterbi_.._

B C

: Deintexleaver Decoder I
D E

= Data

Figure 1. Overall block diagram depicting the CLEAN simulation capability.

HL PROGRAM DESCRIPTIONS

In this section, the programs which deal with the TDRSS system simulation are briefly

described.

A. Forward Error Correcting Codes

The contract requires that Reed-Solomon codes and convolutional codes be considered.

Reed-Solomon codes are a class of block codes. To this end, a program is described which

implements the effect of an (n,k,m,t) block incomplete, errors-only decoder and a separate

program to implement a Viterbi decoder which is used to decode convolutional codes.

1. BlkDecod (Block Decoder)

This program performs the effect of an incomplete, errors (erasure) only decoder. The

program operates by simply partitioning the error sequence into blocks equivalent to a received

codeword. Error statistics are calculated from each block including the number of bit errors and

the number of code symbol errors. If the incomplete decoder detects more errors than the error

correcting capability of the code, then the errors are not corrected, otherwise they are.

This program inputs parameters from an ASCII data f'tle with default name

'BlkDecod.prm' and inputs the error sequence from the file with default name 'error.seq'. The

decoded error sequence is output to the 'error.seq' file and various statistics are output to an

ASCII data file with default name 'BlkDeeod.ID', where ID is a three letter identifier for the

current run which is input from file 'ID.prm'.

The program is run by editing the parameter ftle 'BlkDeeod.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'error.seq' f'fie which contains an error sequence (in packed format) with

decoded errors. The ' error.seq' file must exist prior to the execution of this program.

There is one important assumption associated with the output of this program. It is

assumed that the undetected word error probability is negligible. This is important because this

program does not implement an actual decoding algorithm, rather the decoded error sequence is

constructed by simply counting errors. Under certain circumstances, it is possible for the errors

to occur in such a way so that the receivod codeword is mapped to within a sphere of t (error

correcting capability of the code) about the wrong eodeword. A decoding algorithm cannot

detect (all by itself) that error pattern because it thinks that only a few errors oceurred which are

thencorrected to the wrong codeword. The probability that this event occurs is called the

undetected word error probability. The algorithm implemented here cannot tell whether an error

pattern is undeteetable by a true decoding algorithm. Therefore, this probability is assumed to be

negligible which is, in general, a valid assumption.

2. Viterbi

This program performs hard decision Viterbi decoding assuming the all zero sequence is

transmitted. The Viterbi decoding algorithm assumes that the trellis begins at the all zero state

for the fu'st received code symbol. The end of the decoding process does not terminate with

flush bits. Instead, steady state Viterbi decoding is performed up to the end of the error sequence.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and outputs the decoded error sequence to data file with default name 'error.seq'. In addition,

various statistics are output to an ASCII data file with default name 'Viterbi.ID', where ID is a

three letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter fde 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program 1:!3 by editing file 'ID.prm'. Executing the

program generates the 'error.seq' f'fle which contains an error sequence (in packed format) with

the decoded error sequence. The ' error.seq' file must exist prior to the execution of this

program. There are several assumptions associated with the implementation and output of this

program.

I)

2)

3)

It is assumed that the all zero sequence is transmitted,

The path with the minimum Hamming distance at the i 'h Trellis stage is used to fred the
decoded bit for the output,

It is assumed that the convolutional encoder is either rate 1/2 or rate 1/3. It is straight
forward to exlrapolate this program to accommodate a rate 1In encoder, however this
has not been done to date. It should also be possible to modify this program to
accommodate a rate m/n eneoder using the concept of a punctured convolutional code,
again however, this has not been done to date.

The Viterbi algorithm, as implemented here, updates the Trellis by iterating through each

of the states at the next stage. The Hamming distance for each path entering a given state are

computed and the survivor is kept while the other sequence is discarded. In ease of a tie, a coin

is flipped (via a Uniform RV in [0,1]) to determine the survivor. The survivor is identified by

updating the MLStateTrace array. This array contains the state of the previous Trellis stage

which connects to the given state being processed. For example, suppose that we are now

processing the next stage in the Trellis, we first consider state 1 at the next stage. After

9

investigating the Hamming distances for the two possible paths entering state 1, we find that the

survivor path came from state 3 of the previous Trellis stage. Therefore, MLStateTrace(i,1) = 3

where i is the stage index.

To prevent overwriting the Metric array, two Metric arrays are alternately processed for

each Trellis stage. This is why the algorithm performs two Trellis stage updates for each main

loop. In the first Trellis stage update, the metrics are found in array MetricA and the new metrics

are stored in MetricB. In the second Trellis stage update, the metrics are found in array MetrieB

and the new metrics are stored in MetricA.

The TreUis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage, therefore, K there are N trellis states, then there are only 2*N possible paths between

two trellis stages. These are sequentially numbered from 1 to 2*N where path number i and 2

enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely

define the steady state trellis.

B. Channel Error Sequences

The contract requires that several types of channel errors be considered. A program is

described which generates Binomial (random) errors which would occur K the channel noise was

additive white Gaussian noise (AWGN). Two other programs are described which generate

burst errors and bursty errors. These allow the error bursts to have a variety of length statistics

and occurrence statistics in addition to a variety of error density statistics.

I. BinErrs (Binomial Error Sequence generation)

This program generates an binary error sequence with binomiaUy distributed errors. The

error sequence denotes a correct binary channel transmission with a 0 and denotes an error with a

1. The method used to generate the error sequence depends upon the density of errors to be

generated. If the required density of errors is greater than 0.0I, then the program uses a

conditional test on a uniform random number in the range [0,I]. If the density of errors is less

than 0.01, then the program uses a sample from the exponential distribution to generate the next

error occurrence time.

10

Thisprograminputsparametersfrom anASCII dataf'dewith default name 'BinErrs.prm'

and outputs the error sequence to data f'fie with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'BinErrs.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BinErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing t-fie 'ID.prm'. Executing the

program generates the 'error.seq' file which contains an error sequence (in packed format) with

binomially distributed errors. It does not matter whether the output file 'error.seq' exists or not.

If it exists, it is overwritten without a prompt to the user.

There are no assumptions associated with the implementation or output of this program.

2. BrstErrS (Burst Error Sequence generation)

This program generates a binary error sequence with burst errors. The error sequence

denotes a correct binary channel transmission with a 0 and denotes an error with a 1. The error

sequence is partitioned into two main, noncontiguous parts, the burst error part and the error free

part. The method used to generate the burst error part of the error sequence depends upon the

density of errors to be generated. If the required density of errors is greater than 0.01, then the

program uses a conditional test on a uniform random number in the range [0,1]. If the density of

errors is less than 0.01, then the program uses a sample from the exponential distribution to

generate the next error occurrence time.

This program inputs parameters from an ASCII data file with default name 'BurstErrs.prm'

and outputs the error sequence to a data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'BurstErrs.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BurstErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'error.seq' file which contains an error sequence (in packed format) with

binomially distributed errors. It does not matter whether the output file 'error.seq' exists or not.

If it exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow

error bursts to overlap. The user must take care to specify input parameters so that the

probability of overlapping bursts is negligible.

11

3. BstyErrs (Bursty Errors Sequence generation)

This program generates an binary error sequence with bursty errors; that is, a combination

of random and burst errors. The error sequence denotes a correct binary channel transmission

with a 0 and denotes an error with a 1. The error sequence is partitioned into two main,

noncontiguous parts, the burst error part and the random error part. The method used to generate

each part of the error sequence depends upon the density of errors to be generated. For each

error sequence part, if the required density of errors is greater than 0.01, then the program uses a

conditional test on a uniform random number in the range [0,1]. If the density of errors is less

than 0.01, then the program uses a sample from the exponential distribution to generate the next

error occmTence time.

This program inputs parameters from an ASCII data file with default name

'BurstyErrs.prm' and outputs the error sequence to a data fde with default name 'error.seq'. In

addition, various statistics are output to an ASCII data file with default name 'BurstyErrs.ID',

where 113 is a three letter identifier for the current run which is input from f'tle 'ID.prm'.

The program is run by editing the parameter file 'BurstyErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing fde 'ID.prm'. Executing the

program generates the 'error.seq' rifle which contains an error sequence (in packed forma0 with

binomially distributed errors. It does not matter whether the output file 'error.seq' exists or not.

If it exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not aUow

error bursts to overlap. The user must take care to specify input parameters so that the

probability of overlapping bursts is negligible. It is also assumed that P,g < P,_.

C. Interleavers

The contract requires that block interleavers and periodic convolutional interleavers be

considered. To this end, a program is described which implements the effect of a block

interleaver and a separate program is described which implements the effect of a periodic

convolutional interleaver. Also, there are two versions of each program. The two versions

implement the same operation but trade off computer code eomplexity for execution speed.

12

I. Blocklnt (Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file 'error.seq'.

It is assumed that the channel symbols corresponding to those errors have already been

interleaved using an (C,R,m) block interleaver. The deinterleaver groups every m error sequence

values together and deinterleaves them as a group. The method used to implement the function

of the block interleaver is to read in a block of the error sequence and to use a series of formulas

to perform the block deinterleaving. These formulas are described below.

Let b x denote the error sequence input to the deinterleaver and let d L denote the error

sequence output by the deinterleaver. Note: the subscripts are assumed to be incremented

starting with zero. Then bK is read into the deinterleaver memory array (by columns) at

location:

Symbol index = int(K/m) == Y
Row of bA-= Mod(Y,R) == i
Column of bK = int(YIR) == j
Depth of bK = Mod(K,m) == p

Given i, j, and p the deinterleaved value location (read out by rows) is found to be

L = m * (i*C+j) + p

The implementation found below actually calculates K given L. The actual value b_c is

found in a buffer which is loaded with error sequence values. The calculation is as foUows:

1) L points to location BuffL in the buffer, BuffL = Mod(L,BuffLength)

2) The interleaved location for BuffL is BuffK where

ll = Mod(BuffL,m)
X = BuffL/m
BuffK = m * (R*Mod(X,C) + int4(XIC)) + II

where BuffLength=R*C*m. Note that there is a problem deinterleaving the end of the 'error.seq'

file due to a possible partial interleaver block at the end of the sequence. The program attempts

to partially deinterleave this last partial block. An error sequence could be zero padded to fill a

partial block, thereby changing slightly the overall error statistics.

This program inputs parameters from an ASCII data file with default name 'Blocklnt.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'BloekInt.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

Theprogramisrun by editingtheparameterfile 'Blockl.nt.prm' andselectingthe

appropriateparametersandby choosingaprogramID by editing file 'ID.prm'. Executingthe

programgeneratesthe 'error.seq'file whichcontainsanerror sequence(in packedformat)with

deinterleavederrors. The' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

13

2. BikArr (Alternate Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file 'error.seq'.

It is assumed that the channel symbols corresponding to those errors have already been

interleaved using an (C_,m) block interleaver. The deinterleaver groups every m error sequence

values together and deinterleaves them as a group. The method used to implement the function

of the block interleaver is to read in a block of the error sequence into a buffer which mimics the

block interleaver memory array. The error sequence is read in by rows and deinterleaving is

performed by reading the error sequence out by columns.

This program inputs parameters from an ASCII data file with default name 'BlockInt.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'BlockInt.ID', where 113 is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BlockInt.prm' and selecting the

appropriate parameters and by choosing a program 1:13by editing file 'ID.prm'. Executing the

program generates the 'error.seq' f'de which contains an error sequence (in packed format) with

deinterleaved errors. The 'error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

3. DPCI (Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file 'error.seq'. It is

assumed that the channel symbols corresponding to those errors have already been interleaved

using an (Ntaps,M) periodic convolution interleaver. The method used to implement the function

of the periodic eonvolutional interleaver is a series of formulas as described below. These

functions are applied to a portion of the error.seq array which is stored in a ring buffer.

Let bK denote the error sequence input to the DPCI and let dL denote the error sequence

output by the DPCI. Then the index L relates to the index K as follows,

14

K = Mod((L- 1),Ntaps) * M * Ntaps + L

Note that there is a problem deinterleaving the end of the 'error.seq' file due to the

sequential nature of the algorithm. The DPCI error sequence file is truncated to eliminate the

"don't cares".

This program inputs parameters from an ASCII data file with default name 'DPCI.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'DPCIiD', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DPCI.prm' and selecting the appropriate

parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with

deinterleaved errors. The 'error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

4. DPCIAIt (Alternate Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file 'error.seq'. It is

assumed that the channel symbols corresponding to those errors have already been interleaved

using an (n,M) periodic convolution interleaver. The method used to implement the function of

the periodic convolutional interleaver is a series of formulas as described below.

Let b_denote the error sequence input to the DPCI and let dj denote the error sequence

output by the DPCI. Then the index j relates to the index i as foUows,

j = i - [(i-1) rood n]*M*n

Note that there is a problem deinterleaving the end of the 'error.seq' fie due to the

sequential nature of the algorithm. For this case, the 'error.seq' file is filled with zeroes for those

deinterleaved positions which result from locations which are beyond the end of the 'error.seq'

file.

This program inputs parameters from an ASCII data file with default name 'DPCI.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'DPCIiD', where 113 is a three letter

identifier for the current run which is input from file 'ID.prm'.

15

The program is run by editing the parameter file 'DPCI.prm' and selecting the appropriate

parameters and by choosing a program II3 by editing file 'ID.prrn'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with

deinterleaved errors. The ' error.seq" file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

D. Error Sequence Analysis

The contract requires that error sequence be characterized. This amounts to modeling the

errors by a predefmed mathematical model. Severn mathematical models are considered; one

which models the errors as bursty errors, and one which models the errors as burst errors. Bursty

errors are characterized by errors which occur within bursts as well as errors which occur outside

bursts. Burst errors are characterized by errors which occur only within bursts. In addition, two

programs have been written to implement distribution tests for the purpose of determining if an

error sequence, or a segment of an error sequence, resulted from random errors.

1. CVMseq (Cramer Von-Mises sequence distribution test)

This program uses the Cramer Von-Mises (CVM) distribution test to determine whether

the error sequence (in default file 'error.seq') is binomially distributed with confidence level

alpha. The method implemented is simple. The error sequence is read in by blocks and the

overall CVM test statistic is calculated. At the end of the program, the test statistic for the

complete sequence along with a preselected set of critical values is output to the user. The

results are also output to 'CVMseq.ID' f'de where ID is a three letter identifier for the current rtm

which is input from file 'ID.prm'.

Executing the program causes the 'error.seq' f'fle to be read which contains an error

sequence (in packed format). The 'error.seq' file must exist prior to the execution of this

program. There are no assumptions associated with the implementation or output of this

program.

2. CVMblk (Cramer Von-Mises distribution test on error sequence blocks)

This program uses the Cramer Von-Mises (CVM) distribution test to determine whether

the error sequence (in default file 'error.seq') is binomially distributed with confidence level

alpha. The error sequence is read in by blocks and the CVM test statistic is calculated for each

16

block. At theendof theprogram,theteststatistics for each block along with a preselected set of

critical values are ordered and output to the user. The results are also output to 'CVMblk.ID' file

where ID is a three letter identifier for the current run which is input from file 'ID.prm'.

Executing the program causes the 'error.seq' file to be read which contains an error

sequence (in packed format). The ' error.seq' file must exist prior to the execution of this

program. There are no assumptions associated with the implementation or output of this

program.

3. DeltaEst (Bursty-error parameter estimation via the A method)

This program estimates parameters associated with a bursty error sequence. The method

employed segments the error sequence into random error regions and;burst error regions. The

algorithm implemented operates on the error sequence iteratively. For each iteration, the

algorithm is either tracking a burst segment or a random segment. At each iteration, the error

sequence interval to the next error is found. If the algorithm is tracking a random segment, then

an attempt is made to begin a burst by comparing the error density for the i'h interval (surrounded

by 2 errors which gives an effective error density of 2/[interval+2]) with a threshold (Delta). If

the error density for the i 'h interval is greater than Delta, then the algorithm begins tracking a

burst segment, if not then the random segment is continued. If the algorithm is tracking a burst

segment, then the segment is continued until the error density within the total burst segment fails

below the threshold, Delta. In this way, the entire sequence is partitioned. Initializing the

processes is particularly troublesome because of the various eombinations for the beginning of

the error seq.

This program inputs parameters from an ASCII data file with default name 'DeltaEst.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'DeltaEst.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DeltaEst.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. F_,xeeuting the

program generates the 'error.seq' f'tle which contains an error sequence (in paeked format) with

deinterleaved errors. The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

17

4. IntvHst (Error Interval Histogram)

This program calculates the error interval probability density function for an error

sequence. The error sequence is partitioned into error free segments and a histogram of the

interval length calculated. Note that the two error free intervals occurring at the beginning of the

error sequence and at the end are ignored. Only intervals between errors are counted.

The program outputs the histogram to file 'Interval.hst' which (for now) is an ASCII file

with each histogram value stored per record. For each record, the interval index appears fu'st

followed by the probability of occurrence.

Note that there are NO parameters to be read in for this program. However, various

statistics are output to an ASCII data file with default name 'IntvHst.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'IntvHst.prm' and selecting the

appropriate parameters and by choosing a program 1:13by editing file 'ID.prm'. Executing the

program generates the 'Interval.hst' file which contains the histogram of the error intervals found

in the error sequence. The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

5. GAPEst (fixed GAP burst error distribution Estimation)

This program estimates parameters associated with a bursty error sequence. The method

employed segments the error sequence into error free regions and burst error regions. A burst

error region is defined to be a region which contains errors no two of which are separated by

more than the prespocified GAP number of error free symbols. In addition, the burst error region

is preceded and followed by error free regions of minimum width specified by GAP. The

algorithm implemented operates on the error sequence iteratively. For each iteration, the

algorithm determines the width of the next error free interval, if it is less than GAP then the next

error is included in the current burst, if it is greater than GAP then the previous burst is

terminated and the next burst is started. In this way, the entire sequence is partitioned. If the first

error sequence value is a '0' then the process always begins with an error free region. If the first

error sequence value is a' 1' then the process always begins with an error burst.

18

This program inputs parameters from an ASCII data file with default name 'GAPEst.prm'

and outputs the error sequence to data foe with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'GAPEst.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'GAPEst.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program causes the 'error.seq' file to be read which contains an error sequence (in packed

format). The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

E. Utilities

Several utilities have been developed to support CLEAN. The makefile given i_,athe

following section can be used to compile the source code with a single command by typing

'make all'. The programs which follow allow the user to compare error sequences, set error

sequences, and display error sequences.

1. Make Utility for Lahey Fortran v5.0

FFLAGS =

CorrCW

GaussRV

[terBln

LdBuffl

LdBuff4

NextBrst

NextInt

NextLnth

3vBuffl

SvBuff4

TotalPe

/3 /B /nAl /CI /P /R /Zl

= CorrCW.ob 3 Unpack.ob 3 Pack.ob]

= GaussRV.ob3 UnifRV.ob 3

= IterBln.ob3 UnifRV.ob 3

= LdBuffl.ob3 Unpack.ob 3

= LdBuff4.ob 3 Unpack.ob]

= NextBrst.ob3 UnlfRV.ob] GaussRV.ob3

= NextInt.ob_ LdBuff4.ob 3

= NextLnth.ob 3 UnifRV.ob 3 GaussRV.ob 3

= SvBuffl.ob3 Unpack.ob 3 Pack.ob 3

= SvBuff4.ob3 Unpack.ob 3 Pack.ob]

= TotalPe.ob 3 Unpack.ob 3

ALL :

DPCI DPCIOId GAPest IntvHst SetErrs

BINERRS : BINERRS.ob] $(IterBln) Pack.ob 3 UnlfRV.ob 3

Optllnk BINERRS.ob] $(IterBin) Pack.oh 3 UnlfRV.obj, \

BINERRS.exe,,c:\compiler\lahey\F77L.LIB

BLKARR : BLKARR.ob 3 $(LdBuffl) $(SvBuffl) DlspBufl.ob3

¢ptllnk BLKARR.ob] $(LdBuffl) $(SvBuffl) DlspBufl.ob3, \

BLKARR.exe,,c:\compller\lahey\F77L.LIB

BLKDECOD :

Cptlink

BLOCKINT :

Optllnk

BRSTERRS :

Optllnk

BlnErrs BlkArr BlkDecod Blockint BrstErrs \

BstyErrs CompSeq CVMblk CVMseq DeltaEst DlsplFil DlsplSeo \

BLKDECOD.ob] $(LdBuff4) $(CorrCW)

BLKDECOD.ob3 $(LdBuff4) $(CorrCW), \

BLKDECOD.exe,,c:\compller\lahey\F77L.LIB

BLOCKINT.obj $(LdBuffl) $(SvBuffl) Pack.ob3

BLOCKINT.ob3 $(LdBuffl) $(SvBuffl) Pack.obj,

BLOCKINT.exe,,c:\compller\lahey\F77L.LIB

BRSTERRS.ob 3 $(IterBin) Pack.ob 3 UnlfRV.ob3 $(Next3rst) $(NextLnth

BRSTERRS.ob 3 $(IterBln) Pack.obj UnifRV.ob 3 $(Nex_rst) $(l_extLnth

BRSTERRS.exe,,c:\compller\lahey\F77L.LIB

BSTYERRS.obj $(IterBin) Pack.ob 3 UnifRV.ob3 $(Nex%Brst) $(NextLnth

BSTYERRS.ob3 $(IterBin) Pack.ob 3 UnlfRV.ob 3 $(Nex_3rst) S(_extLnth

BSTYERRS.exe,,c:\compller\lahoy\F77L.LIB

, \

BSTYERRS :

Cptlink , \

19

COMPSEQ: COMPSEQ.ob] Unpack.ob 3

Optllnk COMI_SEQ.ob3 Unpack.ob3, \

COMPSEQ.exe,,c:\compller\lahey\F77L.LIB

CVMblk : CVIMblk.ob] $(LdBuff4) RdStats.ob]

Optlink CVMblk.ob 3 $(LdBuff4) RdStats.ob3, \

CVMblk.exe,,c:\compller\lahey\F77L.LIB

CVMseq: CVMseq.ob 3 $(LdBuff4) $(Nextlnt) RdStats.ob]

Optllnk CVMseq.oD 3 $(LdBuff4) $(NextInt) RdStats.ob],

CVMseq.exe,,c:\compller\lahey\F77L.LIB

3ELTAEST : DELTAEST.ob3 $(LDBuff4) $(NextInt) $(TotalPe

Optllnk DELTAEST.ob 3 $(LDBuff4) $(NextInt) $(TotalPe

DELTAEST.exe,,c:\compller\lahey\F77L.LIB

DISPLF[L : DISPLFIL.ob 3 Unpack.ob3

Optllnk DISPLFIL.ob 3 Unpack.oh3, \

DISPLFIL.exe,,c:\compller\lahey\F77L.LIB

D[SPLSEQ: DISPLSEQ.ob 3 Unpack.ob 3

Optlink DISPLSEQ.ob] Unpack.ob3, \

DISPLSEQ.exe,,c:\compller\lahey\F77L.LIB

DPCI : DPCI.ob] Unpack.ob_ Pack.oh 3

Optllnk DPCI.ob3 Unpack.oh] Pack.oD], \

DPCI.exe,,c:\compller\lahey\F77L.L[B

DPCIOLD : DPCIOLD.ob] Unpack.oh] Pack.oh]

Optlink DPCIOLD.ob] Unpack.ob_ Pack.obT, \

DPCICLD.exe,,c:\compller\lahey\F77L.LIB

GAPEST : GAPEST.ob 3 $(LdBuff4) $(Next[nt)

Dptllnk GAPEST.ob3 $(LdBuff4) $(NextInt) , k

GAPEST.exe,,c:\compller\lahey\F77L.LIB

[ntvHst : In%vHst.ob] $(LDBuff4) $(Nextlnt)

Optllnk InzvHst.ob 3 $(LDBuff4) $(Ne×tInt) , \

IntvHst.exe,,c:\compller\lahey\F77L.LIB

SETERRS : SETERRS.ob] Pack.ob]

Optllnk SETERRS.ob] Pack.ob], \

SETERRS.exe,,c:\compller\lahey\F77L.LIB

BINERRS.ob] : B[NERRS.for

F77L BINERRS.for $(FFLAGS)

BLKARR.ob 3 : BLKARR.for

F77L BLKARR.for $(FFLAGS)

BLKDECOD.ob] : BLKDECOD.for

F77L BLKDECOD.for $(FFLAGS)

BLOCKINT.obg : BLOCKINT.for

F77L BLOCKINT.for $(FFLAGS)

BRSTERRS.ob] : BRSTERRS.for

F77L BRSTERRS.for $(FFLAGS)

BSTYERRS.obg : BSTYERRS.for

F77L BSTYERRS.for $(FFLAGS)

COMPSEQ.obj : COMPSEQ. for

F77L COMPS£Q.for $(FFLAGS)

CVMblk.ob] : CVMblk.for

F77L CVMblk.for $(FFLAGS)

CVMseq.ob] : C_2Mseq.for

F77L CVMseq.for $(FFLAGS)

CorrCW.ob 3 : CorrCW.for

F77L CorrCW.for $(FFLAGS)

DELTAEST.obj : DELTAEST.for

F77L DELTAEST.for $(FFLAGS)

DispBufl.ob3 : DispBufl.for

F77L DispBufl.for $(FFLAGS)

DispBuf4.ob3 : DispBuf4.for

F77L DispBuf4.for $(FFLAGS)

DISPLFIL.ob] : DISPLFIL.for

F77L DISPLFIL.for $(FFLAGS)

DISPLSEQ.obj : DISPLSEQ. for

F77L DISPLSEQ.for $(FFLAGS)

DPCl.ob] : DPCl.for

F77L DPCl.for $(FFLAGS)

DPCIOLD.ob] : DPCIOLD.for

F77L DPCIOLD.for $(FFLAGS)

, \

20

3APEST.ob] : GAPEST.for

F77L GAPEST.for $(FFLAGS)

GAUSSRV.ob] : GAUSSRV. for

F77L GAUSSRV.for $(FFLAGS)

intvHst.oD] : IntvHst.for

F77L IntvHst.for $(FFLAGS)

[TERB!N.ob3 : ITERBIN. for

F77L ITERBIN. for $(FFLAGS)

LDBUFFI.ob] : LDBUFFI.for

F77L LDBUFFI.for S(FFLAGS)

LDBUFF4.ob] : LDBUFF4.for

F77L LDBUFF4.for $(FFLAGS)

>_EXTBRST.ob] : NEXTBRST.for

F77L NEXTBRST.for $(FFLAGS)

NEXTINT.ob] : NEXTINT.for

F77L _XTINT.for S(FFLAGS)

NEXTLNTH.ob] : NEXTLNTH.for

F77L NEXTLNTH.for $(FFLAGS)

PACK.oh3 : PACK.for

F77L PACK.for $(FFLAGS)

[dStats.ob] : RdStats.for

F77L RdStats.for $(FFLAGS)

IETERRS.ob 3 : SETERRS.for

FqTL SETERRS.for $(FFLAGS)

SVBUFFI.oD3 : SVBUFFI.for

F77L SVBUFFI.for $(FFLAGS)

5VBUFF4.ob3 : SVBUFF4.for

F77L SVBUFF4.for $(FFLAGS)

TotalPe.ob] : TotalPe.for

F77L TotalPe.for S(FFLAGS)

UNIFRV.ob] : UNIFRV. for

F77L UNIFRV.for $(FFLAGS)

UNPACK.ob] : UNPACK. for

F77L UNPACK. for $(FFLAGS)

2. CompSeq (Compare Sequence)

This program compares two error sequences and identifies those error locations where the

two are different. The user is prompted for the two error sequence filenames. It is assumed that

the errors stored in error.seq are in the DBESS (Double Byte Error Sequence Symbol) packed

format.

3. SetErrS (Set Error Pattern)

This program interactively allows the user to input an error sequence. All parameters and

the error sequence are input directly from the user so that there is no parameter file associated

with this program. The errors are stored in the DBESS packed format.

There are no assumptions associated with the implementation or output of this program.

21

4. DispiSeq (Display Default Error Sequence)

This program displays the error sequence found in f-tie 'error.seq'. It is assumed that the

errors stored in error.seq are in the DBESS packed format.

5. DispiFil (Display Error Sequence from user File)

This program displays the error sequence found in a fftie specified by the user. It is

assumed that the errors stored in the file are in the DBESS packed format.

IV. NASA GSFC/MSU INTERRELATED CAPABILITIES

22

To enhance the research efforts at both MSU and NASA GSFC, several interrelated

capabilities have been established. The first author visited GSFC in August of 1992 to learn how

to use the Communications Link And System Simulation (CLASS) software tool. CLASS

performs a signal level simulation of the TDRS downlink and predicts coded system

performance using theoretical analysis. In addition, the first author learned how to use the OMV

bit-by-bit simulator which uses the same signal level simulation nucleus as CLASS but also

incorporates actual deinterleaving and decoding algorithms to simulate the operation of the

deinterleavers and decoders at White Sands. After learning how to use these software tools,

analyst level access was granted and has been established. It is now possible for MSU personnel

to exercise CLASS and the OMV bit-by-bit simulator remotely from MSU via internet. MSU

appreciates the support given by the NASA/GSFC CLASS group.

Furthermore, real EOS Ku-band downlink data (validity of the data pending) has been

acquired by Victor Sank at GSFC. A program was written to convert from the GSFC error

sequence data format into the format required by CLEAN. Since these data files are sometimes

rather large which requires large storage spaces, a second program was written to archive the

GSFC data using run length encoding, a lossless compression scheme. For an error sequence

with an error probability of 10 3, this provides about 3:1 lossless compression. For an error

sequence with an error probability of 10*, this provides about 30:1 lossless compression. In

addition, a third program was written to unarchive the run length encoded data into the DBESS

format required by CLEAN. Mr. Sank's help has been invaluable to this project.

A. EOS Real Error Sequence Data conversion program

This program inputs the real EOS downlink data obtained from Victor Sank and converts it

into the DBESS packed format required by the programs in CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.

B. Error Sequence Archiver using Run Length Encoding

This program inputs the real EOS downlink data obtained from Victor Sank and converts it

into an archival format. The archival format only stores the location of each error in the f'de.

This is not the format which is necessary for CLEAN. Another program called SeqUnarc can be

executed to convert from the Archival format to the DBESS format required by CLEAN.

23

It is assumed that the input file accessed by this program exists prior to its execution.

C. Error Sequence Unarchiver

This program inputs data in the archival format (run length encoding) via the SeqArc

program and unarchives it to the DBESS format required by CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.

24

V. PREVIEW OF EXPECTED RESULTS

The problem of interestisthatof choosing/evaluatinga good forward errorcorrecting

coding (FEC) scheme forthe Ku-band TDRS downlink which willbe used forthe Earth

Observation System (EOS). There are many issuestobe consideredwhen choosing a "good"

FEC includingrequirederrorprobability,requireddatarate,and datalossduring synchronization

cyclesjusttoname a few.

For example, suppose itisproposed to use a (255,223)Reed-Solomon (RS) code with a

block interleaverforthe 150Mbps Ku-band TDRS downlink. Ifthiscode meets the required

errorprobability,say 10"5,forthe types and densityoferrorsanticipatedon the linkand ifitcan

accommodate therequireddatarate,150Mbpsx(223/R55)=131Mbps, then thiscode can be

considered acceptable.Ifthe decisionismade toconcatenatea rateI/2 convolutionalencoder

and periodicconvolutionalinterlcaverwith the RS code and block interleaver,then several

undesirablesideeffectswilltakeplace. First,thehardware complexity willincreasewhich will

increasecost,size,weight,power, etc.Second, theperiodicconvolutionaldeinterlcaverand

Viterbidecoder atthe receivermust synchronize to thereceiveddata. The synchronization

process can resultinsignificantdataloss. In addition,theconvolutionalcode rateresultsina

decrease inthesystem datarateto 13IMbpsx(I/2)=65.6Mbps, assuming a fuxcdchannel rate.

Although thisconcatenatedscheme may provide a lower errorprobabilitywhich exceeds the

requirement,itisachieved ata significantcost.Therefore,the studiesdeveloped forthiscontract

focus on determiningand evaluatingthe minimum complexity coding scheme forEOS tosatisfy

the system requirements. This requiresan understanding ofthe natureof the Ku-band downlink

errorsand of the achievableperformance forvariouscoding schemes invarious types oferror

environments.

To thisend,the researchisbeing focussed along two main linesas discussed inthe

followingsections.

A. Research Focus 1

First,thenatureof thedownlink errorsisbeing investigated.The expected resultsare a

consequence of discussionswith NASA/GSFC and STEL personnelconcerning the natureof the

Ku-band downlink errors.The expected resultsare:

i) Determine thattheexpected errorswhich occur in areceived block of dataarenot

random. This isaccomplished by applying theCramer Von-Mises distributiontest(see

CVMblk in SectionIf'I.D.2)tothe actualdata.

25

2) Estimate the error parameters for the actual channel data assuming that the errors are

bursty in nature. These will be estimated by applying the burst-y-error parameter

estimation via the A method (see DeltaEst in Section III.D.3) to the actual data. It is

expected that the burst locations follow a Poisson distribution. The estimated

parameters are:

a) Average rate of burst occurrence and the burst occurrence interval probability

density function (pd.t). It is expected that this pdfis exponential which means

that the burst locations follow a Poisson distribution.

b) The average burst length (in channel symbols) and the burst length pdf. It is

expected the variance of this pdfis small.

e) The average error density during the bursts and the burst error density pdf. It is

expected that the variance of this pdfis small.

d) The average error density outside the bursts. It is expected that this error density

will be very nearly the random error rate.

Because the actual data has not been received to date, this work has not been completed.

B. Research Focus 2

The second focus of this research is the investigation of performance for various coding

schemes in a bursty-error environment. The expected result will be plots similar to the one

shown in Figure 2. Several coding schemes will be considered including:

1) Reed-Solomon (RS)

2) RS, block interleaver (interleave depth of 5)

3) RS, block interleaver (interleave depth of 8)

4) RS outer code, block interleaver (interleave depth of 5), convolutional inner code

5) RS outer code, block interleaver (interleave depth of 5), convolutional inner code,

pexiodie convolutional intefleaver.

The curves drawn are for illustration only but do indicate to some degree the expected shape.

The error ratio R_, as defined in this research, is

Total Random Errors

R_ - Total Errors

26

-IT P.S

Channel ErrorProbability, 0.001

x_J

e_

"8
L_

Blk Int/RS

DPCI/Viterbi/
Blk Int/RS

ViterbF
BIk Int/
ItS

Theoretical Blk

h I
0 1

Error Ratio

Figure 2. An expected output performance data product (for illustration only).

27

To construct Figure 2, a channel error probability, P(_ch), is chosen. For each possible error rate,

the bursty-error parameters are calculated and CLEAN is used to calculate the decoded error

probability. For example, to simulate system (5) identified above, the following programs are

sequentially executed:

1) BstyErrs (see Section HI.B.3)

2) DPCI (see Section]-I'I.C.3)

3) Viterbi (see Section rll.A.2)

4) BlockInt (see Section HI.C.1)

5) BlkDecod (see Section IH.A.1)

The input parameters must be chosen and input to the appropriate parameter fries. The choice

for the input parameters are discussed in the following section. The file 'BlkDecod.ID' where

ID is the 3 letter identifier found in file 'ID.prm' gives the final decoded error probability. Note

that CLEAN performs a Monte Carlo simulation.

It is expected that the actual plot, similar to that shown in Figure 2, will show that the

Reed-Solomon code used with a block interleaver (interleave depth of 5) is sufficient to provide

the required decoded error probability and, therefore, constitutes the "best" coding scheme.

To date, about 10% of the actual plot has been developed for the choice of parameters

discussed in the following section. The required execution time of some of the pro m'ams is on

the order of hours per data point for a SPARC workstation.

C. Choosing System Parameters

Of interest in this research are performance results for cedes which are used for space

based communication systems. The Consultative Committee for Space Data Systems (CCSDS)

[1] defines a concatenated coding scheme for space based communication systems consisting of

a (255,223) RS outer code followed by an interleaver and a rate 1/2 constraint length 7

convolutional inner code. Therefore, these are the code parameters chosen for study in this

research. To summarize

1) Reed-Solomon code (BlkDecod program)

a) Bloeklength, n=255

b) Information eodeword length, k=223

e) Number of binary symbols per eodeword, m--8

c) Error correcting capability, t=16 code symbols per eodeword

2) Convolutional code (Viterbi program)

28

a) Cons_'aintlength,K=7

b) Number of code generators, 2 (code rate = i/2)

c) Tap weights for code generator #1, 1011011

d) Tap weights for code generator #2, 1111001

e) Number of constraint lengths for decoder memory, 4

Also of interest are the interleaver parameters. The Framing and Multiplex Equipment

(FAME) def'mes a standard architecture for space based communication systems which involves

multiplexing 8 (only 5 are utilized) data streams together to form a single data stream for

transmission to earth. This results in a block interleaving effect for the demultiplexed data input

to the RS decoder. Therefore, the block intedeaver imitates the multiplex operation. For the

(255,223) RS code defined above, this requires the block interleaver parameters to be chosen as

3) Block interleaver (BlockIn0

a) Number of rows, 5 (This is alternately chosen to be 8)

b) Number of columns, 255

c) Number of binary symbols per memory array element, 8

In addition, the periodic eonvolutional interleaver currently used has parameters given by

4) Periodic Convolutional Intefleaver (DPCI')

a) Number of taps, 30

b) Number of delays for the 2 "a tap, 2

The only parameters remaining to be specified are the bursty-error parameters. This

requires choosing the burst duration pdfbe chosen along with the mean and possibly the

variance, the burst location pdfbe chosen along with the mean and possibly the variance, the

errordensitywithinthe bursts,and the errordensityoutsidethebursts.These parameters must

be chosen forthegiven raw channel errorprobability,P (Ec_),and foreach possiblevalue forthe

error ratio.

Itisknown thattheKu-band downlink ischaracterizedby essentiallyerrorfree

transmissioninterruptedby short,fixedperiodsof high interference.The interferenceis

probably lessthan0.3gsec induration.Although the average lJrnebetween errorburstsis

unknown, theduty cycleof the interferenceisprobably lessthan0.025. Given thisinformation,

a worse ease scenariocan be constructed.Ifthe worse case interferenceduration is0.31asceand

the channel symbol rateis75Mbps (2 binarysymbols per channel symbol for QPSK givesriseto

the required 150Mbps), then (0.3x10_(75x106bps)(2bits/channelsymbol)--45 binary symbols is

the lengthof each errorburst.As an aside,itiseasy to determine thata (255,223) RS code with

29

a depth 5 block interleaver can correct an error burst of 45 binary symbols. However, it is

possible for multiple error bursts to occur within one interleaved block. In light of this

characterization, some of the bursty-error parameters are chosen as follows

5) Bursty-error Generation (BstyErrS)

a) Burst occurrence location pdf, Im-vFlag=3 (Poisson)

b) Burst occurrence interval mean, InrvMean---4500 binary symbols

e) Burst occurrence duration pdf, LngthFlag=l (Fixed)

d) Burst occurrence duration mean, LngthMean=45 binary symbols

The only two parameters remaining to be chosen are the error probability during the error bursts,

Peb, and the error probability outside the error bursts, Peg. Choosing these is more involved than

the previous parameters because they must be calculated for the predefmed raw channel error

probability, P (ech), and because they must be changed to adjust the error ratio.

The method for calculating Peb and Peg in terms of P(Ech) and R_ is as follows. From [2],

the raw channel error probability for a bursty-error channel is given by

e (ech) = Peg(1 - d /M_) + Peb(d /M_)

where My is the average interval between error bursts (denoted IntvMean in part 4.b above) and

where d is the burst duration (denoted LngthMean in part 4.d above). The error ratio can be

expressed in terms of these symbols to be

ee_(1 -d/My)
e_ =

P(_h)

Solving the previous two equations for Peg and Pe_ gives

Peg - 1 - dlMv

and

Mv
P,b = _ (I- R_)P(_ch)

These are valid provided P,_ > Per Note that for given values of d and M_, it is generally not

possible for the error ratio to take on all values from 0 to 1. Clearly, Peg < Peb < 1/2, from which

it can be determined that

30

0<
P (¢¢h) - d/(2M_)

P(eo.)
<R_< 1-d/M, < 1

which implies that we must have

d

Note that if we choose P(Ech) = dl(2M_) then it is possible to achieve a range for the error ratio of

0 < R_ < 1 by selecting appropriate values for Peg and Pe_.

31

BIBLIOGRAPHY

.

,

Consultative Committe_ for Space Data System, "Recommendations for space data
system standards: Telemetry channel coding." Blue Book, May 1984.

Ebel, W.J., Simulation and Evaluation of Reed-Solomon Codes in a Burst Noise

Environment, Ph.D. Dissertation, University of Missouri-RoUa, 1991.

